Step 1 - Determine available forage from measuring average height of cover crops

Available Forage

Total production minus the minimum allowable residual.
Ex. total prod. $=5,000 \mathrm{lbs} . / \mathrm{ac} .-\mathrm{min}$. residual ($1,200 \mathrm{lbs} . / \mathrm{ac}.)=$ available forage: $5,000-1,200=3,800 \mathrm{lbs} . / \mathrm{ac}$.

Total Production Estimates

Warm-season dominant: first 4 inches $=1,275 \mathrm{lbs} . / \mathrm{lac} .+200 \mathrm{lbs} . / \mathrm{lac}$. per inch of height above 4 inches Cool-season dominant: first 4 inches $=140 \mathrm{lbs} . / \mathrm{ac} .+250 \mathrm{lbs} . / \mathrm{ac}$. per inch of height above 4 inches Mix of cool- and warm-season: roughly $215 \mathrm{lbs} . / \mathrm{ac}$. for each inch of height
Warm- or cool-season dominant: \qquad first 4 in. + \qquad lbs./inch X \qquad Height - 4 in. $=$ 4640 Total air-dry production
Mix of cool- and warm season: \qquad total inches X $215 \mathrm{lbs} . / \mathrm{ac}$. = \qquad Total air-dry production

Available Forage

Warm- or cool season dominant: \qquad first 4 in. + \qquad 250 Ibs./inch X \qquad resid. ht. - 4 inches = 1140 Residual air-dry production
Mix of cool - and warm-season: \qquad min. residual ht. X $215 \mathrm{lbs} . / \mathrm{ac}$. \qquad residual air-dry prod.
Total production from above: \square - residual air-dry \qquad 1140 = Available forage \qquad 3500

Step 2 - Determine usable forage based on utilization
Utilization \%: The utilization percent is higher the shorter the occupation period due to less waste.
The occupation period can be shortened by fencing out smaller areas for grazing.
$0.5-1$ day: 80%; 2 days: 75%; 3 days: 75%; 4 days: 70%; 5 days: 65%; $6-30$ days: 60%
Usable Forage Supply
3500 lbs./ac. Available forage $\mathrm{X} \underline{ } 65 \%$ utilization $=$ \qquad 2275 lbs./ac. usable forage

Step 3 - Determine forage demand from animals

Forage Demand

\qquad lbs. average animal $\times 3 \%$ of body weight/day $=$ \qquad 36 lbs. forage required/AU//day
X \qquad number of animals = \qquad 3600 Total Forage Demand for the herd per day

Last Step - two options

You know the number of acres, but need to determine the number of days they can graze:
\qquad lbs./ac. usable forage (Step 2) X \qquad acres = \qquad 91000 Total lbs.
\qquad Total lbs. \div \qquad 3600 Total Forage Demand $($ Step 3$)=$ \qquad days

You know the number of days you want to graze, but need to determine the number of acres:
\qquad Total Forage Demand (Step 3) X \qquad days = \qquad 18000 Total lbs.
18000 Total lbs. \div \qquad 2275 lbs./ac. usable forage (Step 2) = \qquad acres
(This second option can be used if you have a larger area, but want to divide it up into smaller paddocks in order to increase utilization and increase the overall number of days that grazing can take place.)

Grazing Cover Crops

Step 1 - Determine available forage from measuring average height of cover crops

Available Forage

Total production minus the minimum allowable residual.
Ex. total prod. $=5,000 \mathrm{lbs} . / \mathrm{ac} .-\min$. residual (1,200 lbs./ac.) = available forage: 5,000-1,200 $=3,800 \mathrm{lbs} . / \mathrm{ac}$.

Total Production Estimates

Warm-season dominant: first 4 inches $=1,275 \mathrm{lbs} . / \mathrm{ac} .+200 \mathrm{lbs} . / \mathrm{ac}$. per inch of height above 4 inches
Cool-season dominant: first 4 inches $=140 \mathrm{lbs}$./ac. +250 lbs ./ac. per inch of height above 4 inches
Mix of cool- and warm-season: roughly 215 lbs ./ac. for each inch of height
Warm- or cool-season dominant: \qquad first 4 in. + \qquad lbs./inch X \qquad Height - 4 in. =

Mix of cool- and warm season: \qquad Total air-dry production total inches $\times 215 \mathrm{lbs} . / \mathrm{ac} .=$ \qquad Total air-dry production

Available Forage

Warm- or cool season dominant: \qquad first 4 in. + \qquad lbs./inch X \qquad resid. ht. - 4 inches =
\qquad Residual air-dry production
Mix of cool - and warm-season:
Total production from above:
\qquad min. residual ht. X $215 \mathrm{lbs} . / a c$. \qquad residual air-dry prod.
\qquad - residual air-dry \qquad = Available forage \qquad
Step 2 - Determine usable forage based on utilization
Utilization \%: The utilization percent is higher the shorter the occupation period due to less waste.
The occupation period can be shortened by fencing out smaller areas for grazing.
$0.5-1$ day: 80%; 2 days: 75%; 3 days: 75%; 4 days: 70%; 5 days: 65%; $6-30$ days: 60%
Usable Forage Supply:
\qquad lbs./ac. Available forage X \qquad \% utilization = \qquad lbs./ac. usable forage

Step 3 - Determine forage demand from animals

Forage Demand

\qquad lbs. average animal $\times 3 \%$ of body weight/day $=$ \qquad lbs. forage required/AU//day

X \qquad number of animals = \qquad Total Forage Demand for the herd per day

Last Step - two options

You know the number of acres, but need to determine the number of days they can graze:
\qquad lbs./ac. usable forage (Step 2) X \qquad acres = \qquad Total lbs.
\qquad Total lbs. - \qquad Total Forage Demand (Step 3) = \qquad days

You know the number of days you want to graze, but need to determine the number of acres:
\qquad Total Forage Demand (Step 3) X \qquad days = \qquad Total lbs.
\qquad Total lbs. - \qquad lbs./ac. usable forage (Step 2) = \qquad acres
(This second option can be used if you have a larger area, but want to divide it up into smaller paddocks in order to increase utilization and increase the overall number of days that grazing can take place.)

