

Soils Host Vast Numbers, Mass, and Diversity of Organisms

Global Soil Biodiversity Atlas. 2016. Orgiazzi, Bardgett, Barrios et al. Luxembourg, European Commission, Publications Office of the European Union: **176p**.

Ecosystem Engineers

	Functional group	Function	Representative members
	Ecosystem Engineers	Build pore networks and aggregates	Plant roots, earthworms, larger invertebrates (e.g., millipedes, centipedes, beetles)
A Martine A			

Modified from Turbe et al., 2010; Images from: Orgiazzi, Bardgett, Barrios et al. 2016. Global Soil Biodiversity Atlas.

Chemical Processors (Engineers)

Functional group	Function	Representative members
Chemical Processors	Regulate 90% of energy flow in soil; Build soil organic matter & aggregates	Soil microbes (bacteria, fungi, protozoa)
		Modified from Turbe et al., 2010; Images from: Orgiazzi, Bardgett, Barrios et al. 2016 Global Soil Biodiversity Atlas.

Biological Regulators

Functional group	Function	Representative members
Biological Regulators	Regulate populations of other soil organisms	Protozoa, nematodes, and other small invertebrates (e.g., springtails, mites but also microbes)

Modified from Turbe et al., 2010; Images from: Orgiazzi, Bardgett, Barrios et al. 2016. Global Soil Biodiversity Atlas.

Continuous Flow of C Drives System

Image courtesy of Dr. Chenhui Li

Optimal Activity in Most Ag Systems Occurs When Conditions are 'Just Right'

> 90% bacteria in soil are inactive!

16

Seasonal Microbial Activity

Microbes are impacted by temp and moisture

Soil Fauna Awaken Soil Microbes

15 week time lapse

Made by: Wim van Egmond https://vimeo.com/222168889

Biological Hot Spots

Hot Spot for Ecosystem Engineers Earthworm and Root Channels

Mixes and moves residues Large pores Nutrient rich Microbial enriched Air and water flow Roots grow & take advantage

Beare et al. 1995. Plant & Soil 170:5-22; Kuzyakov et al. 2015. Soil Biol Biochem 83:184-199

Soil Organisms Physically Stabilize Soil Aggregates

SEM photo source (accessed on 6/2/2016): Eickhorst, Thilo & Tippkoetter, Rolf. Micropedology – The hidden world of soils. University of Bremen, Germany. http://www.microped.uni-bremen.de

Soil Organisms Chemically Stabilize Soil Aggregates

Hot Spot For Chemical Processors & Regulators - Rhizosphere

- Root exudates & chemical signals stimulates microbes & predators
 - •Symbiosis
 - Protection
 - •Chemical signaling
 - •Nutrients
 - Resilience

29

Root Zone (Rhizosphere): Key Organisms

Bacteria

- Most numerous...<u>maybe</u>
- 2-5% of SOM but responsible for 90% of energy flow
- 1 g can contain 10 million bacteria and one million species.
- 0.5-3 tons per acre (Killham 1994)

Fungi

- Saprophytic
- Mycorrhizae
- Pathogenic
- Up to 5 tons per acre

Protozoa & Nematodes

- *Consume microbes and recycle nutrients to plant roots
- Turbe et al 2010; Coleman & Crossley 1996; Nannipieri & Badalucco 2003; Global Soil Biodiversity Atlas. 2016. Orgiazzi, Bardgett, Barrios et al.

Rhizosphere Key Organisms Mycorrhizae Extension of Corn Root Surface Area through Mykós (fungus)- riza (root) Mycorrhizal Fungi • Plants use 5-20% of C from photosynthesis to 'feed' fungi Fungi increase adsorptive root surface area at least 10x Fungi increase nutrient uptake • especially P and Zn Fungi suppress pests and diseases Fungal networks build soil aggregates

How Can the Soil Microbiome be Manipulated?

- Select different plant species, varieties, or control at various plant stages (e.g., crop rotation, cover crop selection, planting timing and termination)
- Fertilization (4 R's)
- Soil amendments, including biologicals (promise but fraught with issues)
- Manage the environment to minimize stress (e.g., pathogens, drought, temperature extremes, etc.)
 - Temperature
 - Moisture
 - Maximize presence and duration of hot spots

Belowground Competition

Nematode-trapping Fungi

Vampyrellids (protist) eating a fungal root pathogen involved in take-all disease

Protection from Rhizoctonia solani

Roots with springtails

A single protozoan can eat billions of bacteria each day!

Roots without

springtails

Mite preying on a nematode

Soybean cyst nematode parasitized by the fungus *Hirsutella minnesotensis*

What do Soil Organisms Need?

- How can we feed belowground life?
 - Choose practices that provide diverse, near continuous inputs and build reserves (SOM)
- How can we provide & protect habitat?
 - Choose practices that minimize disturbance of habitat (aggregates) and food sources (SOM + residue)
 - Choose practices that support a stable habitat from major swings in temperature, water, & chemistry

Biological Hot Spots to Optimize Function

Root cartoon and organism images: Orgiazzi , Bardgett, Barrios et al. 2016. Global Soll Biodiversity Atlas.; Slide design by J Moore-Kucera

Soil Health Principles

• If you're not planning to build soil, plan on losing it!

Farm Forever!

• kent.vlieger@usda.gov

• Thank you, Questions? Comments?

• 605-570-1312

• Kent Vlieger