Soil Electrical Conductivity

Relationship to Soil Function
Soil EC does not directly affect plant growth but has been used as an indirect indicator of the amount of nutrients available for plant uptake and salinity levels. EC has been used as a surrogate measure of salt concentration, organic matter, cation-exchange capacity, soil texture, soil thickness, nutrients (e.g., nitrate), water-holding capacity, and drainage conditions. In site-specific management and high-intensity soil surveys, EC is used to partition units of management, differentiate soil types, and predict soil fertility and crop yields. For example, farmers can use EC maps to apply different management strategies (e.g., N fertilizers) to sections of a field that have different types of soil. In some management units, high EC has been associated with high levels of nitrate and other selected soil nutrients (P, K, Ca, Mg, Mn, Zn, and Cu). Most microorganisms are sensitive to salt (high EC). Actinomycetes and fungi are less sensitive than bacteria, except for halophyte (salt-tolerant) bacteria. Microbial processes, including respiration and nitrification, decline as EC increases (table 2).
Problems with Poor Soil EC Levels
High EC can serve as an indication of salinity (EC > 4 dS/m) problems, which impede crop growth (inability to absorb water even when present) and microbial activity (tables 2 and 3). Soils with high EC resulting from a high concentration of sodium generally have poor structure and drainage, and sodium becomes toxic to plants.
Improving Soil EC
Effective irrigation practices, which wash soluble salts out of soil and beyond the rooting depth, can decrease EC. Excessive irrigation and waterlogging should be avoided since a rising water table may bring soluble salts into the root zone. In arid climates, plant residue and mulch help soils to remain wetter and thus allow seasonal precipitation and irrigation to be more effective in leaching salts from the surface. To avoid the adverse effects of high EC (salinity) in irrigation water, the leaching requirement must be calculated for each crop. Leaching requirement is the fraction of water needed to flush excessive salt below the root zone, that is, the amount of additional water required to maintain a target salinity level. Adding organic matter, such as manure and compost, increases EC by adding cations and anions and improving the water-holding capacity. In some cases, a combination of irrigation and drainage is necessary to lower salt concentration and EC. An EC water (ECw) ≤ 0.75 dS/m is considered good for irrigation water. Beyond this value, leaching or a combination of leaching and drainage will be necessary if the water is used.
This Page Was Created Utilizing Text And Images From These Sources:

2024 Soil Health Conference Registration Open!
The 2024 Soil Health School will be held Jan. 23-24 at the Best Western Ramkota Hotel in Rapid City, SD! Keynote speakers include Jay Fuhrer, Jerry Hatfield, Glenn Elzinga, and Zach Smith. There will be many other speakers, breakout sessions, and opportunties to network and socialize! Join us and be a part of our 2024 Soil Health Conference!
News & Events
Student video and essay contests now open
As part of the 2024 Soil Health Conference, the South Dakota Soil Health Conference have announced two exciting contests for students in South Dakota. The student video and essay contests have been designed to give students the opportunity to learn more about soil...
Moisture levels critical to cover crop decisions
By Stan Wise PIERRE, SD – Cover crops offer a wide range of potential benefits for producers – better nutrient cycling, more weed suppression, more livestock forage, better soil structure, increased soil organic matter, and healthier soil microbial communities. To...
Soil Health School offers new segment on diverse rangelands
By Stan Wise Healthy pastures are about more than just grass. That’s a fact that North Dakota State University Extension Rangeland Management Specialist Kevin Sedivec wants participants in the upcoming Soil Health School, Aug. 28-30 near Garretson, SD, to understand....