Bulk Density

Bulk density is an indicator of soil compaction. It is calculated as the dry weight of soil divided by its volume. This volume includes the volume of soil particles and the volume of pores among soil particles. Bulk density is typically expressed in g/cm3.

Relationship to Soil Function

Bulk density reflects the soil’s ability to function for structural support, water and solute movement, and soil aeration. Bulk densities above thresholds in Table 1 indicate impaired function. Bulk density is also used to convert between weight and volume of soil. It is used to express soil physical, chemical and biological measurements on a volumetric basis for soil quality assessment and comparisons between management systems. This increases the validity of comparisons by removing error associated with differences in soil density at time of sampling.

Problems with Poor Function

High bulk density is an indicator of low soil porosity and soil compaction. It may cause restrictions to root growth, and poor movement of air and water through the soil. Compaction can result in shallow plant rooting and poor plant growth, influencing crop yield and reducing vegetative cover available to protect soil from erosion. By reducing water infiltration into the soil, compaction can lead to increased runoff and erosion from sloping land or waterlogged soils in flatter areas. In general, some soil compaction to restrict water movement through the soil profile is beneficial under arid conditions, but under humid conditions compaction decreases yields.

The following practices can lead to poor bulk density:

  • Consistently plowing or disking to the same depth,
  • Allowing equipment traffic, especially on wet soil,
  • Using a limited crop rotation without variability in root structure or rooting depth,
  • Incorporating, burning, or removing crop residues,
  • Overgrazing forage plants, and allowing development of livestock loafing areas and trails, and
  • Using heavy equipment for building site preparation or land smoothing and leveling.

Improving Bulk Density

Any practice that improves soil structure decreases bulk density; however, in some cases these improvements may only be temporary. For example, tillage at the beginning of the growing season temporarily decreases bulk density and disturbs compacted soil layers, but subsequent trips across the field by farm equipment, rainfall events, animals, and other disturbance activities can recompact soil.

On cropland, long-term solutions to bulk density and soil compaction problems revolve around decreasing soil disturbance and increasing soil organic matter. A system that uses cover crops, crop residues, perennial sod, and/or reduced tillage results in increased soil organic matter, less disturbance and reduced bulk density. Additionally, the use of multi-crop systems involving plants with different rooting depths can help break up compacted soil layers.

To reduce the likelihood of high bulk density and compaction:

  • Minimize soil disturbance and production activities when soils are wet,
  • Use designated field roads or rows for equipment traffic,
  • Reduce the number of trips across the area,
  • Subsoil to disrupt existing compacted layers, and
  • Use practices that maintain or increase soil organic matter.

Grazing systems that minimize livestock traffic and loafing, provide protected heavy use areas, and adhere to recommended minimum grazing heights reduce bulk density by preventing compaction and providing soil cover.

This Page Was Created Utilizing Text And Images From These Sources:

Bulk Density, Soil Quality Indicators Fact Sheet- USDA Natural Resources Conservation Service

2024 Soil Health Conference Registration Open!

The 2024 Soil Health School will be held Jan. 23-24 at the Best Western Ramkota Hotel in Rapid City, SD! Keynote speakers include Jay Fuhrer, Jerry Hatfield, Glenn Elzinga, and Zach Smith. There will be many other speakers, breakout sessions, and opportunties to network and socialize! Join us and be a part of our 2024 Soil Health Conference!

News & Events

Wintertime is decision time

Wintertime is decision time

By Stan Wise PIERRE, SD – It’s often said that the best time to start improving your land was 20 years ago, but the second-best time is right now. That statement might be harder for ranchers to swallow with winter on their doorstep, nothing growing in their pastures,...

Research ties healthy soil biology to a host of benefits

Research ties healthy soil biology to a host of benefits

By Stan Wise PIERRE, SD – Agricultural producers often base their land management decisions on the living things they can see above the ground – crops, livestock, forage, weeds, insects, wildlife, etc. However, new research is showing they should also consider life...

Student video and essay contests now open

Student video and essay contests now open

As part of the 2024 Soil Health Conference, the South Dakota Soil Health Coalition has announced two exciting contests for students in South Dakota. The student video and essay contests have been designed to give students the opportunity to learn more about soil...