Soil Nitrate
Nitrate (NO3 -) is a form of inorganic nitrogen (N) naturally occurring in soils. Sources of soil NO3 – include decomposing plant residues and animal manure/compost, chemical fertilizers, exudates from living plants, rainfall, and lightning. Eventually, nitrate ions immobilized by microorganisms (nitrate taken up by microorganisms) are converted into organic forms and released back to the soil in plant-available forms when dead soil organisms are fed upon or decompose. In well drained soils, ammonium (NH4 +) and ammonia (NH3) are converted into NO3 by very specific populations of aerobic bacteria. This process is known as nitrification.
Another biological N transformation is denitrification, which is the conversion of NO3 – into nitrous oxide (N2O), nitrogen dioxide (NO2), and nitrogen gas (N2) that often occurs in anaerobic soils, such as waterlogged soils and wetlands. Even when nitrifying bacteria are very active in the outer parts of aggregates in well aerated soils, denitrification may still occur in anaerobic microsites inside the aggregates. Nitrate is very soluble in water and can be easily transported by runoff and other surface and subsurface flows to rivers and lakes or moved downward to ground water.
Relationship to Soil Function
The primary function of NO3 – is to serve as a source of nitrogen for the nutrition and growth of plants and soil microorganisms.
Problems with Poor Activity
Denitrification results in nitrogen loss from soil and produces some forms of intermediate gaseous nitrogen (e.g., N2O) that are harmful to the environment. Problems associated with high NO3 – concentration include the pollution of ground water and surface water and an increased risk of eutrophication that threatens the survival of aquatic life. Nitrification can potentially result in soil acidification by hydrogen ions (H+) released during the process.
Improving Management
In a study conducted at the University of Maryland Research Center, soil NO3 – concentrations at any depth (except 0-30 cm) have been found to be consistently lower in no-till plots than in conventional-till plots (see Figure 2) and were related to the amount of N fertilizer applied. The explanations by the authors of the study include: (i) the lack of a winter cover crop on the conventional till plots affected the soil N content in the root zone and the subsequent rates of nitrate leaching; (ii) the no-till plots had higher rates of denitrification compared to the conventional till plots (i.e., higher populations of denitrifying organisms in no-till); (iii) crops in no-till plots used N more efficiently (removal of more N from soil); and (iv) the conventional till plots had an accumulation of nitrate from the plant residues of previous years.
The following practices add nitrate:
- Crop rotations with legumes
- Addition of organic residues, manure, and compost
- Conservation tillage and field strips or no-till with a winter cover crop
- Split applications of fertilizer that match crop growth stages
The following practices prevent nitrate loss:
- Autumn applications of ammonium-based fertilizer on frozen soils
- Application of materials that slowly release nitrogen
- Planting cover crop species that use residual NO3-
- Planning the timing and rates of irrigation according to site water content
- Keeping the soil well drained
- Additions of green manure with a high C/N ratio
This Page Was Created Utilizing Text And Images From These Sources:
Soil Nitrate, Soil Quality Indicators Fact Sheet- USDA Natural Resources Conservation Service
Soil Health Conference Registration Open!
The 2025 Soil Health Conference will be held Jan. 15-16 at the Ramkota Hotel and Event Center in Watertown, a spacious venue which will allow for a full day and a half of speaker sessions, awards, producer panels, and time to engage with sponsors. This event will feature many speakers including Keith Berns, Nebraska no-till farmer, ag educator, and co-owner of Green Cover Seed; Paul Jasa, noted Extension egineer at University of Nebraska-Lincoln; Dr. Jon Lundgren, Ecdysis Foundation executive director and CEO of Blue Dasher Farm; and Joe Breker, an award-winning North Dakota producer who has been using regenerative agriculture practices for over 40 years!
News & Events
Noted rancher, author to explain ‘sweet spot’ of grazing at conference
By Janelle Atyeo For South Dakota Soil Health Coalition PIERRE, SD – Tom Krawiec found the sweet spot for grazing quite by accident. The Canadian rancher sought out the point where grass in his pasture was both established enough to stay healthy and nutritious enough...
Study finds soybean yields resilient following late rye termination
By Janelle Atyeo For South Dakota Soil Health Coalition PIERRE, SD – A cover crop of quick growing cereal rye can keep the soil in place over winter’s brown and blowing days. Its long roots soak up excess spring rains, and its straw helps block weeds. The more...
Restaurateur promotes local food for community security
By Stan Wise PIERRE, SD – When Sioux Falls restaurateur Tim Meagher purchases local food, he doesn’t do it because it’s trendy. For him, it’s about securing a future for his business and the community. “If somebody else has control of our food system – if you were a...